Beta
Trial Radar KI
enums.trial_summary.trial_summary_welcome
Eine Studie entspricht den Filterkriterien
Kartenansicht

Comparison of Sepsis Prediction Algorithms

Noch nicht rekrutierend
Die Details der klinischen Studie sind hauptsächlich auf Englisch verfügbar. Trial Radar KI kann jedoch helfen! Klicken Sie einfach auf 'Studie erklären', um die Informationen zur Studie in der ausgewählten Sprache anzuzeigen und zu besprechen.
Die klinische Studie NCT05943938 ist eine beobachtungsstudie zur Untersuchung von Sepsis und hat den Status noch nicht rekrutierend. Der Start ist für 1. November 2025 geplant, bis 1.200 Teilnehmer aufgenommen werden. Durchgeführt von Emory University wird der Abschluss für 1. Mai 2026 erwartet. Die Daten von ClinicalTrials.gov wurden zuletzt am 24. Juli 2025 aktualisiert.
Kurzbeschreibung
Sepsis is a severe response to infection resulting in organ dysfunction and often leading to death. More than 1.5 million people get sepsis every year in the U.S., and 270,000 Americans die from sepsis annually. Delays in the diagnosis of sepsis lead to increased mortality. Several clinical decision support algorithms exist for the early identification of sepsis. The research team will compare the performance of three sepsis prediction algorithms to identify the algorithm that is most accurate and clinically actionable. The algorithms will run in the background of the electronic health record (EHR) and the predictions will not be revealed to patients or clinical staff. In this current evaluation study, the algorithms will not affect any part of a patient's care. The algorithms will be deployed across the Emory healthcare system on data from all patients presenting to the emergency department.
Ausführliche Beschreibung
The primary goal of this study is to prospectively evaluate three sepsis prediction algorithms that are embedded in the EHR. The models will be deployed in a "shadow" mode, and the results will not be displayed to the treatment team during this study. Two of the algorithms are proprietary algorithms of the EHR provider (Epic). The third algorithm is an internally developed, open-source algorithm.

The algorithms will compute the probability of sepsis at periodic intervals and will continue to run on a patient's data until the patient's discharge, death, or upon initiation of intravenous antibiotics (at which point there is an indirect record of clinical suspicion of an infection).

Offizieller Titel

Prospective Evaluation of Sepsis Prediction Algorithms in a Multi-Hospital Healthcare System

Erkrankungen
Sepsis
Weitere Studien-IDs
  • STUDY00005958
NCT-Nummer
Studienbeginn (tatsächlich)
2025-11
Zuletzt aktualisiert
2025-07-24
Studienende (vorauss.)
2026-05
Geplante Rekrutierung
1.200
Studientyp
Beobachtungsstudie
Status
Noch nicht rekrutierend
Stichwörter
Infection
Emergency Department
Algorithm
Prediction
Studienarme/Interventionen
Teilnehmergruppe/StudienarmIntervention/Behandlung
ED Patients
All adult patients presenting to Emergency Departments (ED) in the Emory Healthcare system
Epic Sepsis Model Version - 1
The Epic Sepsis Model (ESM) version 1, a proprietary sepsis prediction model.
Epic Sepsis Model Version - 2
The Epic Sepsis Model (ESM) version 2, a proprietary sepsis prediction model.
Emory Sepsis Model
Emory internal algorithm
Hauptergebnismessungen
ErgebnismessungBeschreibung der MessungZeitrahmen
Patient hospitalization-level area under curve (AUC) for identification of sepsis,
Definition of Sepsis using the Centers for Disease Control and Prevention (CDC) Adult Sepsis Surveillance.
Duration of hospital stay (until discharge or death), an expected average of 30 days
Nebenergebnismessungen
ErgebnismessungBeschreibung der MessungZeitrahmen
Sensitivity, specificity, and Positive and Negative Predictive Value of algorithms
Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
Duration of hospital stay (until discharge or death), an expected average of 30 days
Lead time to antibiotic administration
The time between the initial deployment of the alert in patients confirmed to have sepsis (ture positives) and the physician's ordering of intravenous antibiotic therapy.
Duration of hospital stay (until discharge or death), an expected average of 30 days
Percent expected increase in unnecessary antibiotics
Percent of patients who were incorrectly identified as having sepsis (false positives), and received antibiotics.
Duration of hospital stay (until discharge or death), an expected average of 30 days
Number needed to screen
The number of alerts that would need to be processed to find one true positive sepsis.
Duration of hospital stay (or death), an expected average of 30 days
Number of Total and false alert burden
The number of Total and false alert burden cumulative across all study patients over the study period
Duration of hospital stay (until discharge or death), an expected average of 30 days
Time-horizon based AUCs
AUCs will be calculated at 3 pre-specified time horizons.
4 hours, 8 hours, and 24 hours
Accuracy and calibration by subgroup
The AUC and calibration curves will be compared by sex and race to ensure predictive accuracy is equal across subgroups.
Duration of hospital stay (until discharge or death), an expected average of 30 days
Eignungskriterien

Zugelassene Altersgruppen
Erwachsene, Ältere Erwachsene
Mindestalter
18 Years
Zugelassene Geschlechter
Alle
  • All adult patients admitted through the ED

  • None
Verantwortliche Partei
Siva Bhavani, Hauptprüfer, Assistant Professor, Emory University
Zentrale Studienkontakte
Kontakt: Sivasubramanium Bhavani, MD, 404-712-2970, [email protected]
7 Studienstandorte in 1 Ländern

Georgia

Emory Midtown Hospital, Atlanta, Georgia, 30308, United States
Sivasubramanium Bhavani, MD, Kontakt, 404-501-1000, [email protected]
Emory Saint Joseph's Hospital, Atlanta, Georgia, 30308, United States
Emory Healthcare System, Atlanta, Georgia, 30322, United States
Emory Hospital, Atlanta, Georgia, 30322, United States
Emory Decatur Hospital, Decatur, Georgia, 30033, United States
Sivasubramanium Bhavani, MD, Kontakt, 404-712-2970, [email protected]
Emory Johns Creek Hospital, Johns Creek, Georgia, 30097, United States
Emory Hillandale Hospital, Lithonia, Georgia, 30058, United States
Sivasubramanium Bhavani, MD, Kontakt, 404-501-8000, [email protected]