IA Trial Radar | ||
|---|---|---|
El ensayo clínico NCT01911091 (Columbus) para Obesidad, Disorder of Lipid Storage and Metabolism, Trastornos del Metabolismo de los Lípidos, Trastorno metabólico está activo, no reclutando. Consulte la vista de tarjeta del Radar de Ensayos Clínicos y las herramientas de descubrimiento de IA para conocer todos los detalles. O haga cualquier pregunta aquí. | ||
Un ensayo coincide con los criterios de filtro
Vista de tarjeta
Identification of Novel Skeletal Muscle-derived Factors That Promote Lipid Oxidation (Columbus)
Los detalles del ensayo clínico están disponibles principalmente en inglés. ¡Sin embargo, IA Trial Radar puede ayudar! Simplemente haga clic en 'Explicar el ensayo' para ver y discutir la información del ensayo en el idioma que haya seleccionado.
El estudio clínico NCT01911091 (Columbus) es un ensayo intervencionista para Obesidad, Disorder of Lipid Storage and Metabolism, Trastornos del Metabolismo de los Lípidos, Trastorno metabólico. Su estado actual es: activo, no reclutando. El ensayo se inició el 1 de julio de 2013, con el objetivo de reclutar a 56 participantes. Dirigido por AdventHealth Translational Research Institute, se espera que finalice el 1 de diciembre de 2025. Los datos se actualizaron por última vez en ClinicalTrials.gov el 7 de marzo de 2025.
Resumen
The purpose of this study is to collect data to help researchers identify factors, such as certain proteins or genetic codes, that are secreted from muscle that are associated with the beneficial effects of exercise.
Descripción detallada
Study Objectives:
- To identify specific changes in messenger ribonucleic acid (mRNA)/micro ribonucleic acid (miRNA) expression in muscle associated with higher or lower relative measures of mitochondrial capacity and fat oxidation.
- To identify secreted factors/miRNAs that specifically relate to the metabolic response of muscle and that are present after a single initial bout of exercise.
- To collect the appropriate clinical samples (muscle and adipose tissue, plasma/serum) to enable validation of myokines associated with changes in oxygen consumption/mitochondrial content via in vivo and in vitro discovery efforts.
Título oficial
Identification of Novel Skeletal Muscle-derived Factors That Promote Lipid Oxidation in Both Skeletal Muscle and Adipose Tissue
Condiciones médicas
ObesidadDisorder of Lipid Storage and MetabolismTrastornos del Metabolismo de los LípidosTrastorno metabólicoPublicaciones
Artículos científicos y trabajos de investigación publicados sobre este ensayo clínico:- Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001 May 3;344(18):1343-50. doi: 10.1056/NEJM200105033441801.
- Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008 Jun;15(3):239-46. doi: 10.1097/HJR.0b013e3282f55e09.
- Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012 Apr 3;8(8):457-65. doi: 10.1038/nrendo.2012.49.
- Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008 Oct;88(4):1379-406. doi: 10.1152/physrev.90100.2007.
- Pedersen BK, Fischer CP. Beneficial health effects of exercise--the role of IL-6 as a myokine. Trends Pharmacol Sci. 2007 Apr;28(4):152-6. doi: 10.1016/j.tips.2007.02.002. Epub 2007 Feb 28.
- Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2-3):113-9. doi: 10.1023/a:1026070911202.
- MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC. Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol. 2001 Mar;84(3):180-6. doi: 10.1007/s004210170002.
- Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007 Oct;32(5):833-9. doi: 10.1139/H07-054.
- Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009 Jul;52(7):1409-18. doi: 10.1007/s00125-009-1364-1. Epub 2009 Apr 22.
- Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AM, Taudorf S, Secher NH, Pilegaard H, Bruunsgaard H, Pedersen BK. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007 Feb;50(2):431-8. doi: 10.1007/s00125-006-0537-4. Epub 2006 Dec 7.
- Arner P, Pettersson A, Mitchell PJ, Dunbar JD, Kharitonenkov A, Ryden M. FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity. FEBS Lett. 2008 May 28;582(12):1725-30. doi: 10.1016/j.febslet.2008.04.038. Epub 2008 May 5.
- Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007 Jun;5(6):426-37. doi: 10.1016/j.cmet.2007.05.002.
- Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008 Dec;149(12):6018-27. doi: 10.1210/en.2008-0816. Epub 2008 Aug 7.
- Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007 Jun;5(6):415-25. doi: 10.1016/j.cmet.2007.05.003.
- Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005 Jun;115(6):1627-35. doi: 10.1172/JCI23606. Epub 2005 May 2.
- Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007 Feb;148(2):774-81. doi: 10.1210/en.2006-1168. Epub 2006 Oct 26.
- Lundasen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007 Aug 24;360(2):437-40. doi: 10.1016/j.bbrc.2007.06.068. Epub 2007 Jun 21.
- Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006 Sep;55(9):2470-8. doi: 10.2337/db05-1435.
- Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev. 2011 Mar;27(3):286-97. doi: 10.1002/dmrr.1177....
Otros ID del ensayo
- Columbus
- TRIMDFH 460196
Número del NCT
Inicio del ensayo (real)
2013-07
Última actualización
2025-03-07
Fecha de finalización (estimada)
2025-12
Inscripción (prevista)
56
Tipo de estudio
Intervencionista
FASE
N/A
Estado general
Activo, no reclutando
Palabras clave
skeletal muscle
adipose tissue
metabolism
oxidation
mitochondrial capacity
adipose tissue
metabolism
oxidation
mitochondrial capacity
Objetivo principal
Ciencia básica
Método de asignación
No aleatorizado
Modelo de intervención
Paralelo
Enmascaramiento
Ninguno (Etiqueta abierta)
Brazos / Intervenciones
| Grupo de participantes | Intervención/Tratamiento |
|---|---|
ExperimentalGroup 1 - Regular exercise Alternate interval training and aerobic training and exercise | Ejercicio A 5-minute warm-up and a 5-minute cool-down prior to and following each exercise session, respectively. There will be alternating days of interval training and aerobic training. The interval training will be performed on an upright stationary bike, while the aerobic training will be performed on a treadmill. The interval training will consist of five-minute bouts of higher intensity alternated with 4 minutes of lower intensity for a total duration of 45 minutes. Intensity will increase each week. The aerobic training component will be fixed at a moderate intensity, but will increase in duration each week from 45 minutes to 75 minutes to 90 minutes during the third and final week. |
Sin intervenciónGroup 2 - Athlete exercise Athletes are not given any intervention | N/A |
Sin intervenciónGroup 3 - Obese No Exercise The Obese group will not receive intervention | N/A |
Resultado primario
Resultado secundario
| Medida de resultado | Descripción de la medida | Periodo de tiempo |
|---|---|---|
Measure change in mitochondrial capacity | The difference will be measured in obese, lean and athletic participants.
The Phosphocreatine (PCr) recovery time constant and the PCr level in oxygenated muscle at rest will be used to calculate maximum mitochondrial capacity. | Baseline (Day -6), Day 18 |
| Medida de resultado | Descripción de la medida | Periodo de tiempo |
|---|---|---|
Measure change of expression of proteins | The difference will be measured in obese, lean and athletic participants.
This will be taken from muscle biopsy and/or blood plasma samples obtained at baseline, before and after exercise. | Baseline (Day -6), Day 0, Day 5, Day 12, Day 18 |
Measure change in mRNA/miRNA levels | The difference will be measured in obese, lean and athletic participants.
This will be taken from muscle biopsy and/or blood plasma samples obtained at baseline, before and after exercise. | Baseline (Day -6), Day 0, Day 5, Day 12, Day 18 |
Criterios de elegibilidad
Criterios de edad
Adulto
Edad mínima
18 Years
Criterios de sexo
Todos
Admisión de voluntarios sanos
Sí
Applicable to all Groups
- Healthy men and women, aged 18 - 40, inclusive.
- Willing to stop alcohol and caffeine consumption for 48 hours preceding each blood draw
Applicable to Group 1
- BMI between 22 and 29.9 kg/m2
- Not involved in regular exercise program
- Willing to exercise every day for the study period
Applicable to Group 2
BMI between 22 and 29.9 kg/m2
Maximal oxygen uptake (VO2max) ≥ 45 ml/kg fat-free mass
/min
Engaged in a minimum of 1.5 h of moderate to vigorous intensity aerobic exercise 3 times/ week
Applicable to Group 3
- BMI ≥ 30 kg/m2 and weight ≤ 350 lbs
- Not involved in a regular exercise program
Applicable to All Groups
- History of Type 2 Diabetes
- "Unfavorable anatomy" for continuous venous blood sample collection
- Abnormal resting ECG
- Significant renal, cardiac, liver, lung, or neurological disease (controlled hypertension is acceptable if baseline bp < 140/90 on medications)
- Use of drugs known to affect energy metabolism or body weight: including, but not limited to: orlistat, sibutramine, ephedrine, phenylpropanolamine, corticosterone, etc
- Current treatment with blood thinners or anti-platelet medications that cannot be safely stopped for testing procedures
- New onset (<3 months on a stable regime) use of oral contraceptives or hormone replacement therapy
- Alcohol or other drug abuse
- Smoking within the past 3 months
- Females that are currently or have been pregnant or are currently or have nursed a child within the last 12 months (minimum).
- Parental enrollment into the study that compromises the well being of the child [no partner or connected caregiver]
- Unwilling or unable to abstain from caffeine or alcohol 48 hours prior to metabolic rate measurements
- Increased liver function tests
- Metal objects that would interfere with the measurement of body composition /magnetic resonance spectroscopy such as implanted rods, surgical clips, etc
- Any New York Heart Association class of congestive heart failure
- History of deep vein thrombosis or pulmonary embolism
- Significant varicose veins
- Abnormal blood count/Anemia, or blood donation within the last 2 months
- Major surgery on the abdomen, pelvis, or lower extremities within previous 3 months
- Bariatric surgery or liposuction within the previous 3 years
- Cancer (active malignancy with or without concurrent chemotherapy)
- Rheumatoid disease
- Bypass graft in limb
- Known genetic factor (Factor V Leiden, etc) or hypercoagulable state
- Diagnosed peripheral arterial or vascular disease, or intermittent claudication
- Family history of primary deep vein thrombosis or pulmonary embolism
- Peripheral neuropathy
- Claustrophobia
- Frequent nocturnal urination and/or sleep apnea
- Presence of any condition that, in the opinion of the investigator, compromises participant safety or data integrity or the participants' ability to complete the training protocol
Applicable to Group 2
- Gait problems
- Major Depression
- Presence of an eating disorder or eating attitudes/behaviors that could interfere with the study completion
- Unwilling or unable to complete the protocol
Applicable to Group 3
- HbA1c ≥ 6.5% (O)
Sanford-Burnham Medical Research Institute
Takeda Pharmaceutical209 ensayos clínicos activos para explorar
No hay datos de contacto.
1 Sitios del ensayo en 1 países
Florida
Translational Research Institute for Metabolism and Diabetes, Orlando, Florida, 32804, United States