IA Trial Radar | ||
|---|---|---|
El ensayo clínico NCT06404268 para Accidente cerebrovascular está reclutando. Consulte la vista de tarjeta del Radar de Ensayos Clínicos y las herramientas de descubrimiento de IA para conocer todos los detalles. O haga cualquier pregunta aquí. | ||
Un ensayo coincide con los criterios de filtro
Vista de tarjeta
Facilitating Neuroplastic Changes of Acute Stroke Survivors
Los detalles del ensayo clínico están disponibles principalmente en inglés. ¡Sin embargo, IA Trial Radar puede ayudar! Simplemente haga clic en 'Explicar el ensayo' para ver y discutir la información del ensayo en el idioma que haya seleccionado.
El ensayo clínico NCT06404268 está diseñado para estudiar el tratamiento de Accidente cerebrovascular. Es un estudio intervencionista de Fase I Fase II. Su estado actual es: reclutando. El ensayo se inició el 1 de junio de 2025, con el objetivo de reclutar a 68 participantes. Dirigido por la Universidad de Maryland en Baltimore, se espera que finalice el 31 de agosto de 2028. Los datos se actualizaron por última vez en ClinicalTrials.gov el 9 de julio de 2025.
Resumen
This project will develop a wearable rehabilitation robot suitable for in-bed acute stage rehabilitation. It involves robot-guided motor relearning, passive and active motor-sensory rehabilitation early in the acute stage post-stroke including patients who are paralyzed with no motor output. The early acute stroke rehabilitation device will be evaluated in this clinical trial.
Descripción detallada
Stroke survivors often experience loss of motor control and impaired function. Immediately after stroke, there is a time-limited window of heightened plasticity during which the greatest gains in recovery occur. Therefore, early intensive sensorimotor rehabilitation post-stroke is critical in improving functional outcomes and minimizing disability. However, acute stroke survivors often receive little active training to improve mobility during their hospital stay and they are left alone during most of the day. Especially for those acute patients with no voluntary motor output, active motor training might be even less, partly due to a lack of rehabilitation protocols to detect potential motor recovering signals sensitively and facilitate neuroplastic changes. To address this unmet clinical need, this project will develop a novel wearable rehabilitation robot suitable for in-bed acute stage rehabilitation with guided motor relearning, passive and active motor-sensory rehabilitation early in the acute stage post-stroke including patients who are paralyzed with no motor output. The early acute stroke rehabilitation device will be evaluated in this clinical trial.
Título oficial
Facilitating Neuroplastic Changes of Acute Stroke Survivors With Severe Hemiplegia
Condiciones médicas
Accidente cerebrovascularPublicaciones
Artículos científicos y trabajos de investigación publicados sobre este ensayo clínico:- Zhang C, Huang MZ, Kehs GJ, Braun RG, Cole JW, Zhang LQ. Intensive In-Bed Sensorimotor Rehabilitation of Early Subacute Stroke Survivors With Severe Hemiplegia Using a Wearable Robot. IEEE Trans Neural Syst Rehabil Eng. 2021;29:2252-2259. doi: 10.1109/TNSRE.2021.3121204. Epub 2021 Nov 4.
- Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012 Oct;26(8):923-31. doi: 10.1177/1545968312440745. Epub 2012 Mar 30.
- Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011 May 14;377(9778):1693-702. doi: 10.1016/S0140-6736(11)60325-5.
- Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996 May;75(5):2144-9. doi: 10.1152/jn.1996.75.5.2144.
- Ren Y, Wu YN, Yang CY, Xu T, Harvey RL, Zhang LQ. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):589-596. doi: 10.1109/TNSRE.2016.2584003. Epub 2016 Jun 22.
- Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW; Task Force on Childhood Motor Disorders. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003 Jan;111(1):e89-97. doi: 10.1542/peds.111.1.e89.
- Selles RW, Li X, Lin F, Chung SG, Roth EJ, Zhang LQ. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch Phys Med Rehabil. 2005 Dec;86(12):2330-6. doi: 10.1016/j.apmr.2005.07.305.
- Sukal-Moulton T, Clancy T, Zhang LQ, Gaebler-Spira D. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Arch Phys Med Rehabil. 2014 Aug;95(8):1433-40. doi: 10.1016/j.apmr.2014.04.010. Epub 2014 May 2.
- Waldman G, Yang CY, Ren Y, Liu L, Guo X, Harvey RL, Roth EJ, Zhang LQ. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke. NeuroRehabilitation. 2013;32(3):625-34. doi: 10.3233/NRE-130885.
- Wu YN, Hwang M, Ren Y, Gaebler-Spira D, Zhang LQ. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011 May;25(4):378-85. doi: 10.1177/1545968310388666. Epub 2011 Feb 22.
- Wu YN, Ren Y, Goldsmith A, Gaebler D, Liu SQ, Zhang LQ. Characterization of spasticity in cerebral palsy: dependence of catch angle on velocity. Dev Med Child Neurol. 2010 Jun;52(6):563-9. doi: 10.1111/j.1469-8749.2009.03602.x. Epub 2010 Jan 28.
- Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol. 1998 Apr;79(4):2119-48. doi: 10.1152/jn.1998.79.4.2119.
- Yang CY, Guo X, Ren Y, Kang SH, Zhang LQ. Position-dependent, hyperexcitable patellar reflex dynamics in chronic stroke. Arch Phys Med Rehabil. 2013 Feb;94(2):391-400. doi: 10.1016/j.apmr.2012.09.029. Epub 2012 Oct 11.
- Zhang LQ, Chung SG, Ren Y, Liu L, Roth EJ, Rymer WZ. Simultaneous characterizations of reflex and nonreflex dynamic and static changes in spastic hemiparesis. J Neurophysiol. 2013 Jul;110(2):418-30. doi: 10.1152/jn.00573.2012. Epub 2013 May 1.
- Zhang LQ, Rymer WZ. Reflex and intrinsic changes induced by fatigue of human elbow extensor muscles. J Neurophysiol. 2001 Sep;86(3):1086-94. doi: 10.1152/jn.2001.86.3.1086.
- Zhang LQ, Wang G, Nishida T, Xu D, Sliwa JA, Rymer WZ. Hyperactive tendon reflexes in spastic multiple sclerosis: measures and mechanisms of action. Arch Phys Med Rehabil. 2000 Jul;81(7):901-9. doi: 10.1053/apmr.2000.5582.
- Zhao H, Wu YN, Hwang M, Ren Y, Gao F, Gaebler-Spira D, Zhang LQ. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy. J Appl Physiol (1985). 2011 Aug;111(2):435-42. doi: 10.1152/japplphysiol.01361.2010. Epub 2011 May 19.
- Albert SJ, Kesselring J. Neurorehabilitation of stroke. J Neurol. 2012 May;259(5):817-32. doi: 10.1007/s00415-011-6247-y. Epub 2011 Oct 1.
- Bernhardt J, Chan J, Nicola I, Collier JM. Little therapy, little physical activity: rehabilitation within the first 14 days of organized stroke unit care. J Rehabil Med. 2007 Jan;39(1):43-8. doi: 10.2340/16501977-0013.
- Bernhardt J, Dewey H, Thrift A, Donnan G. Inactive and alone: physical activity within the first 14 days of acute stroke unit care. Stroke. 2004 Apr;35(4):1005-9. doi: 10.1161/01.STR.0000120727.40792.40. Epub 2004 Feb 26.
- Chung SG, van Rey E, Bai Z, Rymer WZ, Roth EJ, Zhang LQ. Separate quantification of reflex and nonreflex components...
Otros ID del ensayo
- HP-00110205
Número del NCT
Inicio del ensayo (real)
2025-06-01
Última actualización
2025-07-09
Fecha de finalización (estimada)
2028-08-31
Inscripción (prevista)
68
Tipo de estudio
Intervencionista
FASE
Fase I
Fase II
Fase II
Estado general
Reclutando
Palabras clave
Stroke
Paraplegia
Acute
Paraplegia
Acute
Objetivo principal
Tratamiento
Método de asignación
Aleatorizado
Modelo de intervención
Paralelo
Enmascaramiento
Simple
Brazos / Intervenciones
| Grupo de participantes | Intervención/Tratamiento |
|---|---|
ExperimentalStudy group - Wearable ankle robot rehab Wearable rehab robot with motor relearning with real-time feedback, passive stretching under intelligent control; Active movement training with robotic assistance | Motor Relearning Training Ankle motor control relearning training under real-time feedback Estiramiento pasivo Passive stretching under intelligent robotic control Gamed-based Active Movement Training Active movement training through movement games with robotic assistance |
Comparador activoControl group - Limited wearable ankle robot rehab The same wearable robot used by the study group will be used for the control group but in a limited way: no motor relearning training under real-time feedback; passive movement in the joint middle range of motion instead of passive stretching; active movement training with no robotic assistance | Movimiento pasivo Passive movement in the joint middle range of motion Active Movement Training Active movement training without robotic assistance Ankle Torque and Motion Measurement Ankle torque and motion measurement with no real-time feedback |
Resultado primario
Resultado secundario
| Medida de resultado | Descripción de la medida | Periodo de tiempo |
|---|---|---|
Fugl-Meyer Lower Extremity (FMLE) | The Fugl-Meyer Lower Extremity (FMLE) assessment is a measure of lower extremity (LE) motor and sensory impairments. The FMLE scale ranges from 0 to 34, with higher scores indicating better motor function. | At the beginning and end of 3-week training, and 1 month after the treatment ends] |
| Medida de resultado | Descripción de la medida | Periodo de tiempo |
|---|---|---|
Active range of motion (AROM) | AROM will be measured in degrees in the ankle joint while subjects use the muscles to move the ankle. | At the beginning and end of 3-week training, and 1 month after the treatment ends |
Passive Range of Motion (PROM) will be measured in degrees in the ankle joint while the robot moves the ankle of the subject strongly. | Passive Range of Motion PROM will be measured in degrees in the ankle joint while the robot moves the ankle of the subject strongly. | At the beginning and end of 3-week training, and 1 month after the treatment ends |
Strength of the ankle flexor-extensor muscle will be measured in Newtons | Strength of the ankle flexor-extensor muscle will be measured in Newtons | At the beginning and end of 3-week training, and 1 month after the treatment ends |
Modified Ashworth Scale (MAS) | The Modified Ashworth Scale is the most widely used assessment tool to measure resistance to limb movement in a clinic setting. Scores range from 0-4, with 6 choices. 0 (0) - No increase in muscle tone; 1 (1) - Slight increase in muscle tone, manifested by a catch and release or by minimal resistance at the end of the range of motion when the affected part(s) is moved in flexion or extension; 1+ (2) - Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM (range of movement); 2 (3) - More marked increase in muscle tone through most of the ROM, but affect part(s) easily moved; 3 (4) - Considerable increase in muscle tone passive, movement difficult; 4 (5) - Affected part(s) rigid in flexion or extension. | At the beginning and end of 3-week training, and 1 month after the treatment ends |
Berg Balance Scale | The Berg balance scale is used to objectively determine a patient's ability (or inability) to safely balance during a series of predetermined tasks. The Berg balance scale ranges from 0 to 56. It is a 14-item list with each item consisting of a five-point ordinal scale ranging from 0 to 4, with 0 indicating the lowest level of function and 4 the highest level of function. | At the beginning and end of 3-week training, and 1 month after the treatment ends |
10-meter Walk Test | The 10 Meter Walk Test is a performance measure used to assess walking speed in meters per second over a short distance at the beginning and end of 3-week training, and 1 month after the treatment ends. It can be employed to determine functional mobility and gait function. | At the beginning and end of 3-week training, and 1 month after the treatment ends |
Criterios de elegibilidad
Criterios de edad
Adulto, Adulto mayor
Edad mínima
30 Years
Criterios de sexo
Todos
- Acute first time unilateral hemispheric stroke (hemorrhagic or ischemic stroke, 24 hours after admission to 1 month post-stroke at the start of the proposed treatment)
- Hemiplegia or hemiparesis
- 0≤Manual Muscle Testing (MMT)<=2
- Age 30-85
- Ankle impairments including stiff calf muscles and/or inadequate dorsiflexion
- Medically not stable
- Associated acute medical illness that interferes with ability to training and exercise
- No impairment or very mild ankle impairment of ankle
- Severe cardiovascular problems that interfere with ability to perform moderate movement exercises
- Cognitive impairment or aphasia with inability to follow instructions
- Severe pain in legs
- Severe ankle contracture greater than 15° plantar flexion (when pushing ankle to dorsiflexion)
- Pressure ulcer, recent surgical incision or active skin disease with open wounds present below knee
Parte responsable del ensayo
Li-Qun Zhang, Investigador principal, Professor, University of Maryland, Baltimore
Contactos centrales del ensayo
Contacto: Soh-Hyun Hur, 410 706-8625, [email protected]
2 Sitios del ensayo en 1 países
Maryland
University of Maryland Baltimore, Baltimore, Maryland, 21201, United States
Dali Xu, PhD, Contacto
Peiwen Fu, BS, Contacto
Reclutando
UMROI, Baltimore, Maryland, 21207, United States
Dali Xu, Contacto
Peiwen Fu, Contacto
Reclutando